Product Description
Product Description
7BAR Mining Diesel Piston Air Compressor for Rock Drill
The 0.7MPa reciprocating plug air compressor gathers the latest technical achievements of domestic and foreign micro and small air compressors.
Lean design, highlighting high pressure and efficiency:
1.) The 8 series air compressor adopts 4 lap piston rings, which can effectively improve the sealing and service life of the product. The optimized design of the air valve can effectively reduce the exhaust resistance and exhaust temperature, and improve the exhaust volume. The patented aluminum cover with inlet and outlet separation and high heat dissipation fins can realize rapid heat dissipation, effectively reduce exhaust temperature and reduce energy consumption.
2.) The intake air filter is used for load reduction to effectively reduce energy consumption.
3.) Use oil spray lubrication: the cylinder, connecting rod, crankshaft and bearing operate reliably.
Close to the actual needs of users:
The complete series of products, from small to large, meet the demand of different models of pneumatic rock drills, pneumatic picks and other pneumatic machinery, suitable for different users. Good quality and low investment cost
Product Parameters
| Model | W1.8/5 | W2.85/5 | W3.0/5 | W3.5/5 |
| Air delivery(m3/min) | 1.8 | 2.85 | 3 | 3.5 |
| Working pressure(Mpa) | 0.5 | 0.5 | 0.5 | 0.5 |
| Rotation speed(mm) | 1180 | 1070 | 1070 | 1070 |
| Cylinders(mm) | 3*100 | 3*115 | 3*120 | 3*125 |
| Piston stroke(mm) | 80 | 100 | 100 | 100 |
| Tank(L) | 130 | 200 | 200 | 200 |
| Motor power(kW) | 11 | 15 | 15 | 18.5 |
| Cooling way | Air cooled | Air cooled | Air cooled | Air cooled |
| Weight(KG) | 299 | 400 | 405 | 410 |
| L(mm) | 1630 | 1750 | 1750 | 1750 |
| W(mm) | 750 | 940 | 940 | 940 |
| H(mm) | 1150 | 1290 | 1290 | 1290 |
Detailed Photos
Features:
1.Value plate and spring strip: made of special steel from Sweden and after special treatment; high efficient and reliable.
2.Piston ring: special design; integral casting; excellent flexibility; lowest lubricating oil consumption.
3.Cylinder: made of boron cast iron; wear resistant; special suitable for dust condition.
4.Cylinder cover: extrusion process adopted; streamlined external appearance; good heat emission performance.
5.Crankshaft: made from ductile cast iron; rare magnesium alloy after heat treatment and surface quenching;excellent performance.
6.Simple structure, light weight, easy to move.
Packaging & Shipping
Company Profile
Certifications
FAQ
1. How long is your air compressor & drilling rig warranty?
∗ 1 years for the whole machine after leave the factory
2. Do you provide After- sales service parts?
∗Of course, we have.
3.How long could your machine be used?
∗More than 10 years if have regular maintenance.
4. How is your machine quality?
∗All the machines must pass the strict test before leave factory.
And our factory has above 20 years manufacturing experience,can gurantee the quality.
5.Which payment term you accpet?
∗Now we will accpet TT,LC,Western Union,Trade Assurance online,Paypal,Cash,etc.
6.How about the delivery time?
∗Within about 1 week.
7.Can visit your factory?
∗Yes,welcome to our factory. We will treat you in China,and pick you up at airport.
We are near to HangZhou International Airport.
| After-sales Service: | 24 Hours Online Service |
|---|---|
| Warranty: | 1 Year |
| Lubrication Style: | Lubricated |
| Cooling System: | Air Cooling |
| Cylinder Position: | Horizontal |
| Structure Type: | Open Type |
.webp)
What is the impact of humidity on compressed air quality?
Humidity can have a significant impact on the quality of compressed air. Compressed air systems often draw in ambient air, which contains moisture in the form of water vapor. When this air is compressed, the moisture becomes concentrated, leading to potential issues in the compressed air. Here’s an overview of the impact of humidity on compressed air quality:
1. Corrosion:
High humidity in compressed air can contribute to corrosion within the compressed air system. The moisture in the air can react with metal surfaces, leading to rust and corrosion in pipes, tanks, valves, and other components. Corrosion not only weakens the structural integrity of the system but also introduces contaminants into the compressed air, compromising its quality and potentially damaging downstream equipment.
2. Contaminant Carryover:
Humidity in compressed air can cause carryover of contaminants. Water droplets formed due to condensation can carry particulates, oil, and other impurities present in the air. These contaminants can then be transported along with the compressed air, leading to fouling of filters, clogging of pipelines, and potential damage to pneumatic tools, machinery, and processes.
3. Decreased Efficiency of Pneumatic Systems:
Excessive moisture in compressed air can reduce the efficiency of pneumatic systems. Water droplets can obstruct or block the flow of air, leading to decreased performance of pneumatic tools and equipment. Moisture can also cause problems in control valves, actuators, and other pneumatic devices, affecting their responsiveness and accuracy.
4. Product Contamination:
In industries where compressed air comes into direct contact with products or processes, high humidity can result in product contamination. Moisture in compressed air can mix with sensitive products, leading to quality issues, spoilage, or even health hazards in industries such as food and beverage, pharmaceuticals, and electronics manufacturing.
5. Increased Maintenance Requirements:
Humidity in compressed air can increase the maintenance requirements of a compressed air system. Moisture can accumulate in filters, separators, and other air treatment components, necessitating frequent replacement or cleaning. Excessive moisture can also lead to the growth of bacteria, fungus, and mold within the system, requiring additional cleaning and maintenance efforts.
6. Adverse Effects on Instrumentation:
Humidity can adversely affect instrumentation and control systems that rely on compressed air. Moisture can disrupt the accuracy and reliability of pressure sensors, flow meters, and other pneumatic instruments, leading to incorrect measurements and control signals.
To mitigate the impact of humidity on compressed air quality, various air treatment equipment is employed, including air dryers, moisture separators, and filters. These devices help remove moisture from the compressed air, ensuring that the air supplied is dry and of high quality for the intended applications.
.webp)
How do you choose the right air compressor for woodworking?
Choosing the right air compressor for woodworking is essential to ensure efficient and effective operation of pneumatic tools and equipment. Here are some factors to consider when selecting an air compressor for woodworking:
1. Required Air Volume (CFM):
Determine the required air volume or cubic feet per minute (CFM) for your woodworking tools and equipment. Different tools have varying CFM requirements, so it is crucial to choose an air compressor that can deliver the required CFM to power your tools effectively. Make sure to consider the highest CFM requirement among the tools you’ll be using simultaneously.
2. Tank Size:
Consider the tank size of the air compressor. A larger tank allows for more stored air, which can be beneficial when using tools that require short bursts of high air volume. It helps maintain a consistent air supply and reduces the frequency of the compressor cycling on and off. However, if you have tools with continuous high CFM demands, a larger tank may not be as critical.
3. Maximum Pressure (PSI):
Check the maximum pressure (PSI) rating of the air compressor. Woodworking tools typically operate within a specific PSI range, so ensure that the compressor can provide the required pressure. It is advisable to choose an air compressor with a higher maximum PSI rating to accommodate any future tool upgrades or changes in your woodworking needs.
4. Noise Level:
Consider the noise level of the air compressor, especially if you’ll be using it in a residential or shared workspace. Some air compressors have noise-reducing features or are designed to operate quietly, making them more suitable for woodworking environments where noise control is important.
5. Portability:
Assess the portability requirements of your woodworking projects. If you need to move the air compressor frequently or work in different locations, a portable and lightweight compressor may be preferable. However, if the compressor will remain stationary in a workshop, a larger, stationary model might be more suitable.
6. Power Source:
Determine the power source available in your woodworking workspace. Air compressors can be powered by electricity or gasoline engines. If electricity is readily available, an electric compressor may be more convenient and cost-effective. Gasoline-powered compressors offer greater flexibility for remote or outdoor woodworking projects where electricity may not be accessible.
7. Quality and Reliability:
Choose an air compressor from a reputable manufacturer known for producing reliable and high-quality equipment. Read customer reviews and consider the warranty and after-sales support offered by the manufacturer to ensure long-term satisfaction and reliability.
8. Budget:
Consider your budget and balance it with the features and specifications required for your woodworking needs. While it’s important to invest in a reliable and suitable air compressor, there are options available at various price points to accommodate different budgets.
By considering these factors and evaluating your specific woodworking requirements, you can choose an air compressor that meets the demands of your tools, provides efficient performance, and enhances your woodworking experience.
.webp)
Are there air compressors specifically designed for high-pressure applications?
Yes, there are air compressors specifically designed for high-pressure applications. These compressors are engineered to generate and deliver compressed air at significantly higher pressures than standard air compressors. Here are some key points about high-pressure air compressors:
1. Pressure Range: High-pressure air compressors are capable of producing compressed air at pressures typically ranging from 1000 to 5000 psi (pounds per square inch) or even higher. This is considerably higher than the typical range of 100 to 175 psi for standard air compressors.
2. Construction: High-pressure aircompressors feature robust construction and specialized components to withstand the higher pressures involved. They are designed with reinforced cylinders, pistons, valves, and seals that can handle the increased stress and prevent leaks or failures under high-pressure conditions.
3. Power: Generating high-pressure compressed air requires more power than standard compressors. High-pressure air compressors often have larger motors or engines to provide the necessary power to achieve the desired pressure levels.
4. Applications: High-pressure air compressors are utilized in various industries and applications where compressed air at elevated pressures is required. Some common applications include:
- Industrial manufacturing processes that involve high-pressure air for operations such as air tools, pneumatic machinery, and equipment.
- Gas and oil exploration and production, where high-pressure air is used for well drilling, well stimulation, and enhanced oil recovery techniques.
- Scuba diving and underwater operations, where high-pressure air is used for breathing apparatus and underwater tools.
- Aerospace and aviation industries, where high-pressure air is used for aircraft systems, testing, and pressurization.
- Fire services and firefighting, where high-pressure air compressors are used to fill breathing air tanks for firefighters.
5. Safety Considerations: Working with high-pressure air requires adherence to strict safety protocols. Proper training, equipment, and maintenance are crucial to ensure the safe operation of high-pressure air compressors. It is important to follow manufacturer guidelines and industry standards for high-pressure applications.
When selecting a high-pressure air compressor, consider factors such as the desired pressure range, required flow rate, power source availability, and the specific application requirements. Consult with experts or manufacturers specializing in high-pressure compressed air systems to identify the most suitable compressor for your needs.
High-pressure air compressors offer the capability to meet the demands of specialized applications that require compressed air at elevated pressures. Their robust design and ability to deliver high-pressure air make them essential tools in various industries and sectors.


editor by CX 2023-09-28
China OEM Diesel Portable Screw Air Compressor Kubota Engines for Mining small air compressor
Solution Description
one.Gasoline Control Program: It is basic and reputable. Inlet fee from 0 to a hundred% and be adjusted immediately based on the fuel consumption. Automatically modify the motor throttle to help save diesel gasoline.
2.Microcomputor Intelligent Handle: Air compressor discharge pressure, exhaust fuel temperature, motor velocity, oil pressure, drinking water temperature and fuel tank level operating parameters with computerized alarm and shutdown safety.
three.Multi-Phase Air Filter and Large Oil-Drinking water Cooler: It is not only suitable for dusty function surroundings, but it is suited for higher temperature and high altitude surroundings.
4.Parts and Factors: They can be preserved inside the accesible assortment which is hassle-free and simple.
5.Covenient: Easy to shift in rough terrain.Each and every compressor has lifting rings on the top for secure hoisting and transportation.
| Single Stage Compression Transportable Diesel Screw Air Compressor | |||||
| Model | Capability | Stress | Diesel motor kind | Bodyweight | Dimensions |
| m3/min | bar | KGS | L×W×H mm | ||
| SYC-3/seven | two.eight | 7 | 32kw | a thousand | 2200*1560*1400 |
| SYC-5/7 | 5 | 7 | 41KW | 1100 | 2821X1470X1361 |
| SYC-6/8 | six | 8 | 55kW | 1400 | 3750×1920×1700 |
| SYC-7/eight | 7 | eight | 4D80-K20,58kW | 1400 | 3750×1920×1700 |
| SYC-8/7 | 8 | seven | 65kw | 1400 | 3750×1920×1700 |
| SYC-8/eight | eight | eight | 65kw | 1400 | 3750×1920×1700 |
| SYC-9/8 | eight.8 | 8 | 75kW | 1600 | 3750×1920×1700 |
| SYC-10/seven | 10 | seven | YC4D95Z-K20,70kW | 1900 | 3900×1920×1700 |
| SYC-8.5/14 | 8.five | fourteen | 4BTA3.9-C125,93kW | 1900 | 3900×1920×1900 |
| SYC-ten/10 | ten | 10 | 4BTA3.9-C125,93kW | 1900 | 3900×1920×1900 |
| SYC-10/13 | 10 | 13 | 4BTA3.9-C125,93kW | 2050 | 4080×1980×2350 |
| SYC-thirteen/10 | 13 | 10 | 4BTA3.9-C125,93kW | 2050 | 4080×1980×2350 |
| SYC-12/seven | 12 | seven | 4BTA3.9-C125,93kW | 2050 | 3900×1980×1900 |
| SYC-twelve/twelve | 12 | twelve | 6BTA5.9-C180,132kW | 2380 | 4080×1980×2350 |
| SYC-twelve/13 | twelve | thirteen | 6BTA5.9-C180,132kW | 2750 | 4080×1980×2350 |
| SYC-thirteen/13 | thirteen | thirteen | 6BTA5.9-C180,132kW | 2750 | 3450×1520×2220 |
| SYC-seventeen/seven | seventeen | seven | 6BTA5.9-C180,132kW | 3350 | 3380×1640×2350 |
| SYC-fifteen/thirteen | 15 | 13 | YC6A240-twenty,177kW | 3350 | 3380×1650×2500 |
| SYC-16/13 | 16 | 13 | 6CTA8.3-C215,158kW | 3350 | 3980×1800×2450 |
| SYC-thirteen/17 | thirteen | 17 | 6CTA8.3-C215,158kW | 3400 | 3780×1980×2350 |
| SYC-17/14.5 | seventeen | 14.5 | 6CTA8.3-C260,194kW | 3400 | 3980×1800×2450 |
| SYC-19/fourteen.5 | 19 | fourteen.5 | 6CTA8.3-C260,194kW | 3400 | 3980×1800×2450 |
| SYC-eighteen/seventeen | 18 | seventeen | 6CTA8.3-C260,194kW | 3400 | 3980×1800×2450 |
| SYC-twenty/13 | 20 | thirteen | 6CTA8.3-C260,194kW | 3400 | 3980×1800×2450 |
| SYC-22/8 | 22 | 8 | 6CTA8.3-C260,194kW | 4000 | 4580×1950×2600 |
| SYC-26/eight | 26 | eight | 6CTA8.3-C260,194kW | 4000 | 4580×1950×2600 |
| SYC-22/fourteen | 22 | fourteen | 6CTA8.9-C325, 239kW | 4500 | 4580×1950×2600 |
| SYC-27/ten | 27 | 10 | 6CTA8.9-C325, 239kW | 5000 | 4600×1950×2850 |
| SYC-30/ten | 30 | 10 | 6CTA8.9-C325, 240kW | 5000 | 4600×1950×2850 |
| Two Stages Compression Portable Diesel Screw Air Compressor | |||||
| SYC-19.5/19 | 19.5 | 19 | 6CTA8.3-C260,194KW | 3700 | 3650*1800*2500 |
| SYC-22/twenty | 22 | 20 | 6LTA8.9-C360,265KW | 4500 | 4600*1950*2850 |
| SYC-26/20 | 26 | 20 | 6LTA8.9-C360,265KW | 4850 | 4600*1950*2850 |
| SYC-27/22 | 27 | 22 | NTA855-P400 | 5000 | 4600*1950*2850 |
| SYC-26/25 | 26 | twenty five | QSZ13-C500 | 5100 | 4700*2100*2500 |
| SYC-21/35 | 21 | 35 | QSZ13-C500 | 5100 | 4700*2100*2500 |
| SYC-33/25 | 33 | twenty five | QSZ13-C550 | 5200 | 4700*2100*2500 |
| SYC-26/35 | 26 | 35 | QSZ13-C550 | 5200 | 4700*2100*2500 |
Contact Person: Mrs.Amiee
|
/ Set | |
1 Set (Min. Order) |
###
|
Shipping Cost:
Estimated freight per unit. |
To be negotiated| Freight Cost Calculator |
|---|
###
| After-sales Service: | Online Technical Support |
|---|---|
| Warranty: | 1 Year |
| Lubrication Style: | Lubricated |
###
| Customization: |
|---|
###
| Single Stage Compression Portable Diesel Screw Air Compressor | |||||
| Model | Capacity | Pressure | Diesel engine type | Weight | Dimensions |
| m3/min | bar | KGS | L×W×H mm | ||
| SYC-3/7 | 2.8 | 7 | 32kw | 1000 | 2200*1560*1400 |
| SYC-5/7 | 5 | 7 | 41KW | 1100 | 2821X1470X1361 |
| SYC-6/8 | 6 | 8 | 55kW | 1400 | 3750×1920×1700 |
| SYC-7/8 | 7 | 8 | 4D80-K20,58kW | 1400 | 3750×1920×1700 |
| SYC-8/7 | 8 | 7 | 65kw | 1400 | 3750×1920×1700 |
| SYC-8/8 | 8 | 8 | 65kw | 1400 | 3750×1920×1700 |
| SYC-9/8 | 8.8 | 8 | 75kW | 1600 | 3750×1920×1700 |
| SYC-10/7 | 10 | 7 | YC4D95Z-K20,70kW | 1900 | 3900×1920×1700 |
| SYC-8.5/14 | 8.5 | 14 | 4BTA3.9-C125,93kW | 1900 | 3900×1920×1900 |
| SYC-10/10 | 10 | 10 | 4BTA3.9-C125,93kW | 1900 | 3900×1920×1900 |
| SYC-10/13 | 10 | 13 | 4BTA3.9-C125,93kW | 2050 | 4080×1980×2350 |
| SYC-13/10 | 13 | 10 | 4BTA3.9-C125,93kW | 2050 | 4080×1980×2350 |
| SYC-12/7 | 12 | 7 | 4BTA3.9-C125,93kW | 2050 | 3900×1980×1900 |
| SYC-12/12 | 12 | 12 | 6BTA5.9-C180,132kW | 2380 | 4080×1980×2350 |
| SYC-12/13 | 12 | 13 | 6BTA5.9-C180,132kW | 2750 | 4080×1980×2350 |
| SYC-13/13 | 13 | 13 | 6BTA5.9-C180,132kW | 2750 | 3450×1520×2220 |
| SYC-17/7 | 17 | 7 | 6BTA5.9-C180,132kW | 3350 | 3380×1640×2350 |
| SYC-15/13 | 15 | 13 | YC6A240-20,177kW | 3350 | 3380×1650×2500 |
| SYC-16/13 | 16 | 13 | 6CTA8.3-C215,158kW | 3350 | 3980×1800×2450 |
| SYC-13/17 | 13 | 17 | 6CTA8.3-C215,158kW | 3400 | 3780×1980×2350 |
| SYC-17/14.5 | 17 | 14.5 | 6CTA8.3-C260,194kW | 3400 | 3980×1800×2450 |
| SYC-19/14.5 | 19 | 14.5 | 6CTA8.3-C260,194kW | 3400 | 3980×1800×2450 |
| SYC-18/17 | 18 | 17 | 6CTA8.3-C260,194kW | 3400 | 3980×1800×2450 |
| SYC-20/13 | 20 | 13 | 6CTA8.3-C260,194kW | 3400 | 3980×1800×2450 |
| SYC-22/8 | 22 | 8 | 6CTA8.3-C260,194kW | 4000 | 4580×1950×2600 |
| SYC-26/8 | 26 | 8 | 6CTA8.3-C260,194kW | 4000 | 4580×1950×2600 |
| SYC-22/14 | 22 | 14 | 6CTA8.9-C325, 239kW | 4500 | 4580×1950×2600 |
| SYC-27/10 | 27 | 10 | 6CTA8.9-C325, 239kW | 5000 | 4600×1950×2850 |
| SYC-30/10 | 30 | 10 | 6CTA8.9-C325, 240kW | 5000 | 4600×1950×2850 |
| Two Stages Compression Portable Diesel Screw Air Compressor | |||||
| SYC-19.5/19 | 19.5 | 19 | 6CTA8.3-C260,194KW | 3700 | 3650*1800*2500 |
| SYC-22/20 | 22 | 20 | 6LTA8.9-C360,265KW | 4500 | 4600*1950*2850 |
| SYC-26/20 | 26 | 20 | 6LTA8.9-C360,265KW | 4850 | 4600*1950*2850 |
| SYC-27/22 | 27 | 22 | NTA855-P400 | 5000 | 4600*1950*2850 |
| SYC-26/25 | 26 | 25 | QSZ13-C500 | 5100 | 4700*2100*2500 |
| SYC-21/35 | 21 | 35 | QSZ13-C500 | 5100 | 4700*2100*2500 |
| SYC-33/25 | 33 | 25 | QSZ13-C550 | 5200 | 4700*2100*2500 |
| SYC-26/35 | 26 | 35 | QSZ13-C550 | 5200 | 4700*2100*2500 |
|
/ Set | |
1 Set (Min. Order) |
###
|
Shipping Cost:
Estimated freight per unit. |
To be negotiated| Freight Cost Calculator |
|---|
###
| After-sales Service: | Online Technical Support |
|---|---|
| Warranty: | 1 Year |
| Lubrication Style: | Lubricated |
###
| Customization: |
|---|
###
| Single Stage Compression Portable Diesel Screw Air Compressor | |||||
| Model | Capacity | Pressure | Diesel engine type | Weight | Dimensions |
| m3/min | bar | KGS | L×W×H mm | ||
| SYC-3/7 | 2.8 | 7 | 32kw | 1000 | 2200*1560*1400 |
| SYC-5/7 | 5 | 7 | 41KW | 1100 | 2821X1470X1361 |
| SYC-6/8 | 6 | 8 | 55kW | 1400 | 3750×1920×1700 |
| SYC-7/8 | 7 | 8 | 4D80-K20,58kW | 1400 | 3750×1920×1700 |
| SYC-8/7 | 8 | 7 | 65kw | 1400 | 3750×1920×1700 |
| SYC-8/8 | 8 | 8 | 65kw | 1400 | 3750×1920×1700 |
| SYC-9/8 | 8.8 | 8 | 75kW | 1600 | 3750×1920×1700 |
| SYC-10/7 | 10 | 7 | YC4D95Z-K20,70kW | 1900 | 3900×1920×1700 |
| SYC-8.5/14 | 8.5 | 14 | 4BTA3.9-C125,93kW | 1900 | 3900×1920×1900 |
| SYC-10/10 | 10 | 10 | 4BTA3.9-C125,93kW | 1900 | 3900×1920×1900 |
| SYC-10/13 | 10 | 13 | 4BTA3.9-C125,93kW | 2050 | 4080×1980×2350 |
| SYC-13/10 | 13 | 10 | 4BTA3.9-C125,93kW | 2050 | 4080×1980×2350 |
| SYC-12/7 | 12 | 7 | 4BTA3.9-C125,93kW | 2050 | 3900×1980×1900 |
| SYC-12/12 | 12 | 12 | 6BTA5.9-C180,132kW | 2380 | 4080×1980×2350 |
| SYC-12/13 | 12 | 13 | 6BTA5.9-C180,132kW | 2750 | 4080×1980×2350 |
| SYC-13/13 | 13 | 13 | 6BTA5.9-C180,132kW | 2750 | 3450×1520×2220 |
| SYC-17/7 | 17 | 7 | 6BTA5.9-C180,132kW | 3350 | 3380×1640×2350 |
| SYC-15/13 | 15 | 13 | YC6A240-20,177kW | 3350 | 3380×1650×2500 |
| SYC-16/13 | 16 | 13 | 6CTA8.3-C215,158kW | 3350 | 3980×1800×2450 |
| SYC-13/17 | 13 | 17 | 6CTA8.3-C215,158kW | 3400 | 3780×1980×2350 |
| SYC-17/14.5 | 17 | 14.5 | 6CTA8.3-C260,194kW | 3400 | 3980×1800×2450 |
| SYC-19/14.5 | 19 | 14.5 | 6CTA8.3-C260,194kW | 3400 | 3980×1800×2450 |
| SYC-18/17 | 18 | 17 | 6CTA8.3-C260,194kW | 3400 | 3980×1800×2450 |
| SYC-20/13 | 20 | 13 | 6CTA8.3-C260,194kW | 3400 | 3980×1800×2450 |
| SYC-22/8 | 22 | 8 | 6CTA8.3-C260,194kW | 4000 | 4580×1950×2600 |
| SYC-26/8 | 26 | 8 | 6CTA8.3-C260,194kW | 4000 | 4580×1950×2600 |
| SYC-22/14 | 22 | 14 | 6CTA8.9-C325, 239kW | 4500 | 4580×1950×2600 |
| SYC-27/10 | 27 | 10 | 6CTA8.9-C325, 239kW | 5000 | 4600×1950×2850 |
| SYC-30/10 | 30 | 10 | 6CTA8.9-C325, 240kW | 5000 | 4600×1950×2850 |
| Two Stages Compression Portable Diesel Screw Air Compressor | |||||
| SYC-19.5/19 | 19.5 | 19 | 6CTA8.3-C260,194KW | 3700 | 3650*1800*2500 |
| SYC-22/20 | 22 | 20 | 6LTA8.9-C360,265KW | 4500 | 4600*1950*2850 |
| SYC-26/20 | 26 | 20 | 6LTA8.9-C360,265KW | 4850 | 4600*1950*2850 |
| SYC-27/22 | 27 | 22 | NTA855-P400 | 5000 | 4600*1950*2850 |
| SYC-26/25 | 26 | 25 | QSZ13-C500 | 5100 | 4700*2100*2500 |
| SYC-21/35 | 21 | 35 | QSZ13-C500 | 5100 | 4700*2100*2500 |
| SYC-33/25 | 33 | 25 | QSZ13-C550 | 5200 | 4700*2100*2500 |
| SYC-26/35 | 26 | 35 | QSZ13-C550 | 5200 | 4700*2100*2500 |
Types of Air Compressors
There are many types of Air Compressors available on the market. Learn which one is right for your needs and what makes one better than another. Find out more about Single-stage models, Oil-free models, and Low-noise models. This article will explain these types and help you decide which one you need. You can also learn about Air Compressors that have single-stage compressors. If you are looking for a high-quality compressor, this article will help you choose a unit.
Air Compressors
Air compressors work by forcing atmospheric air through an inlet valve. As the piston moves down, it pulls atmospheric air into the chamber. As the piston rises, it forces the compressed air out of the cylinder through an exhaust valve. One of the most common types of air compressor is the reciprocating type. Another type of compressor is a single-stage piston. These types of compressors compress air in one stroke – equivalent to the complete rotation of the piston’s crankshaft.
These devices change electrical or mechanical energy into pressurized air. When air is compressed, its volume decreases, increasing its pressure. Air compressors typically have a minimum pressure of 30 bars. The lower pressure band is the range of air pressure. Most compressors are controlled separately, but network controls can be used to interconnect multiple compressors. This type of controller will not work for all types of compressors. There are other types of air compressors that can communicate with each other.
Compressed air has multiple applications in all kinds of industries. In agriculture, it can power pneumatically powered material handling machines for irrigation and crop spraying. Dairy equipments also use compressed air. Compressors are also used in the pharmaceutical industry for mixing tanks, packaging, and conveyor systems. Portable air compressors, which can be powered by diesel fuel, are frequently used at remote drilling sites. Portable air compressors are also commonly used in oil and gas. They can be used to remotely control valves and install reactor rods.
Whether you use an air compressor for agricultural purposes or in a manufacturing setting, there are some features to consider when choosing an air compressor for your needs. A good compressor will have a safety device. It will automatically shut off the input air and output air once sufficient compressing has been achieved. These features will help your air compressor remain efficient and protect your equipment. The safety device is an important feature of any air compressor to increase its overall efficiency.
Vane air compressors are the most common type. They are generally smaller and less powerful than reciprocating piston compressors, so you can use one of these for applications that are under 100 horsepower. The vane air compressors have low compression ratios and high capacities, but they are generally limited to low-power applications. Vane compressors tend to run hot, and they typically have a low compression ratio. It is important to choose the correct oil viscosity for your compressor.
Single-stage models
When comparing single-stage air compressors, look for the term “stages.” Multi-stage compressors use two stages and can handle more capacity and pressure. One stage involves pressurizing air using a piston and a lower-pressure cylinder. This compressed air is then moved to a storage tank. Single-stage models tend to be more energy-efficient than their two-stage counterparts. But if you don’t need a high-pressure cylinder, a single-stage air compressor can be the best choice.
Although single-stage air compressors produce less power, they can produce enough air to power pneumatic tools and other pneumatic equipment. These single-stage units are most useful for smaller-scale home projects and DIY projects. For more industrial purposes, a dual-stage model is the best choice. But if you’re in a hurry, a single-stage unit may be sufficient. Ultimately, it depends on what you plan to do with the air compressor.
Single-stage air compressors feature a single cylinder, one piston stroke for each revolution of pressurized air. Single-stage compressors are typically smaller and more compact, making them a good choice for smaller work environments. Their cfm capacity (cubic feet per minute) is an important indicator of operating capacity. If you plan to use multiple pneumatic tools, you will probably need a higher cfm model. Similarly, the horsepower of single-stage compressors indicates its working capacity. One horsepower moves 550 pounds per foot per minute.
Multi-stage air compressors are generally more expensive and more energy-efficient than single-stage units, but they can offer higher air flow rates. While they may be more complex, they can lower general operating expenses. If you plan on using your air compressor for industrial or commercial use, a dual-stage model might be the best choice. However, if you’re planning to use the air compressor for mass production, a single-stage model may be the best choice.
Single-stage air compressors have the same piston size and number of inlets, while dual-stage models have a smaller first piston and a much longer second piston. Both have a cooling tube in between the two pistons to reduce the air temperature before the second round of compression. The single-stage model is typically small and portable, while the double-stage air compressor is stationary. These compressors can both be stationary and large.
Low-noise models
Despite its name, low-noise models of air compressors are not all the same. The noise level of a compressor can be affected by several factors, including the power source and proximity to the machine. Reciprocal compressors are generally louder than electric ones because of their many moving parts. By contrast, rotary-screw and scroll compressors have fewer moving parts and are quieter.
The noise level of a gas-powered air compressor can be extremely high, making it unsuitable for use indoors. To combat this problem, you can choose an electric model. The noise level of a compressor is primarily caused by motor friction. The cover of a piston is also a major factor in noise, as pistons with minimal covers will produce a lot of noise. Previously, oil was required for a quiet compressor. However, this has changed thanks to the medical industry’s demand for oil-free models.
The CZPT EC28M Quiet Air Compressor is another model that features quiet operation. This air compressor makes 59dB of noise. This level is low enough to allow you to carry on normal conversations while it cycles. In addition, this compressor has an industrial oil-free pump and a 2.8 Amp direct-drive induction motor. These two features make it a great choice for businesses.
Low-noise models of air compressors are available for the construction industry. However, these compressors are not necessarily low-quality, which is why you should consider the noise level of your air tool before purchasing one. The specialists at CZPT can recommend the low-noise models for your particular application and space. Noise can distract people who work near the air compressor. That is why many businesses now opt for these models.
Oil-free models
A number of oil-free models of air compressors are available, but what makes them special? Oil-free compressors don’t contain oil, so they’re lubricated by grease instead. They’re a good choice if you’re working with a small compressor and don’t want to risk damaging it. On the other hand, oil-free models do generate significant amounts of heat, which can damage the compressor. Higher pressure can grind the compressor against itself, or even warp it.
A few words of knowledge can help you choose the best oil-free air compressor for your needs. For example, a compressor’s horsepower is a measurement of how powerful the motor is. Higher horsepower means a higher PSI or ACFM. You can also use the ACFM to compare the two. Scroll technology is a modern air compression system that uses a stationary and mobile spiral. This reduces the volume of air in the compressor by directing it to the center.
Purchasing an oil-free air compressor doesn’t have to be a daunting task, though. A good distributor can advise you on what type of oil-free air compressor is right for you. This way, you can save money and enjoy peace of mind while using your air compressor. And, of course, the best way to get a great deal on an air compressor is to speak to a distributor who is knowledgeable about the products available.
An oil-free air compressor is a great option for businesses that are sensitive to the contamination of air. For example, in the pharmaceutical and food industry, a minuscule oil could spoil a product or even damage production equipment. Oil-free air compressors generally have lower maintenance costs than oil-flooded models because there are fewer moving parts. Because of this, oilless air compressors require fewer maintenance and may still need to be replaced occasionally.
A few advantages of an oil-free air compressor over an oil-lubricated one include lower noise levels. Oil-free air compressors tend to be less noisy and run more quietly than oil-injected ones, but you should still carefully weigh the pros and cons before making a decision. Also, consider how much you use your air compressor before choosing a model. The pros outweigh the cons. In the end, you’ll be glad you chose an oil-free air compressor.


editor by CX 2023-03-27
China Axtrim Portable Home Spray Paint Electric 8 Bar 24L Piston Silent Oil Free Car Air Compressor for Sale small air compressor
Product Description
|
Model |
Electrical power |
TANK |
Strain |
Velocity |
AIR Delivery |
Fat |
Proportions |
|
w |
liter/gallon |
bar/psi |
rpm |
L/min |
kg |
mm |
|
|
BW-600-9L |
550 |
9/2.38 |
8/115 |
1420 |
110 |
15 |
480*215*480 |
|
BW-800-24L |
750 |
24/6.5 |
8/a hundred and fifteen |
1420 |
145 |
20 |
535*275*565 |
|
BW-600H2-50L |
550*2 |
fifty/thirteen.two |
eight/115 |
1420 |
220 |
35 |
695*345*580 |
|
BW-800H3-100L |
750*three |
one hundred/26.five |
8/115 |
1420 |
435 |
eighty three |
1070*400*690 |
|
US $75.87 / Piece | |
100 Pieces (Min. Order) |
###
| Lubrication Style: | Oil-free |
|---|---|
| Cooling System: | Air Cooling |
| Cylinder Arrangement: | Balanced Opposed Arrangement |
| Cylinder Position: | Horizontal |
| Structure Type: | Closed Type |
| Compress Level: | Multistage |
###
| Customization: |
Available
|
|---|
###
|
MODEL
|
POWER
|
TANK
|
PRESSURE
|
SPEED
|
AIR DELIVERY
|
WEIGHT
|
DIMENSIONS
|
|
w
|
liter/gallon
|
bar/psi
|
rpm
|
L/min
|
kg
|
mm
|
|
|
BW-600-9L
|
550
|
9/2.38
|
8/115
|
1420
|
110
|
15
|
480*215*480
|
|
BW-800-24L
|
750
|
24/6.5
|
8/115
|
1420
|
145
|
20
|
535*275*565
|
|
BW-600H2-50L
|
550*2
|
50/13.2
|
8/115
|
1420
|
220
|
35
|
695*345*580
|
|
BW-800H3-100L
|
750*3
|
100/26.5
|
8/115
|
1420
|
435
|
83
|
1070*400*690
|
|
US $75.87 / Piece | |
100 Pieces (Min. Order) |
###
| Lubrication Style: | Oil-free |
|---|---|
| Cooling System: | Air Cooling |
| Cylinder Arrangement: | Balanced Opposed Arrangement |
| Cylinder Position: | Horizontal |
| Structure Type: | Closed Type |
| Compress Level: | Multistage |
###
| Customization: |
Available
|
|---|
###
|
MODEL
|
POWER
|
TANK
|
PRESSURE
|
SPEED
|
AIR DELIVERY
|
WEIGHT
|
DIMENSIONS
|
|
w
|
liter/gallon
|
bar/psi
|
rpm
|
L/min
|
kg
|
mm
|
|
|
BW-600-9L
|
550
|
9/2.38
|
8/115
|
1420
|
110
|
15
|
480*215*480
|
|
BW-800-24L
|
750
|
24/6.5
|
8/115
|
1420
|
145
|
20
|
535*275*565
|
|
BW-600H2-50L
|
550*2
|
50/13.2
|
8/115
|
1420
|
220
|
35
|
695*345*580
|
|
BW-800H3-100L
|
750*3
|
100/26.5
|
8/115
|
1420
|
435
|
83
|
1070*400*690
|
A Buyer’s Guide to Air Compressor Types
There are many types of Air Compressors, and it’s important to understand what each type has to offer. In this article, we’ll discuss single stage air compressors, low-noise compressors, and models with two pistons. But, before you buy an Air Compressor, be sure to read our buyer’s guide to the various types. This way, you’ll have all of the information you need to make the right decision for your business.
Single-stage air compressors
A single-stage air compressor is an excellent choice for most general-purpose purposes. They provide enough power to operate pneumatic tools, and they produce less heat. Single-stage air compressors, however, are not suitable for heavy-duty industrial uses. However, they can be used in various applications, including auto shops, gas stations, and various manufacturing facilities. They are also suitable for borewells and other high-pressure places.
These air compressors are a great choice for home use and are suitable for small-scale businesses, contractors, and small shops. These compressors have continuous duty cycles, cast iron compressor pumps, and a minimum 5,000-hour pump life. They also feature advanced features, including ODP motors, Auto Start & Controls, Receiver tanks, and power cords. They have low maintenance and can save you a great deal of money.
Single-stage air compressors are generally less expensive and lighter than their two-stage counterparts. Single-stage air compressors are also more portable, which is a plus for small projects. While two-stage compressors offer higher CFM, they are more powerful and bulky, making them unsuitable for small or home use. So it is essential to determine what you will use the air compressor for and decide on a model based on your needs.
A single-stage air compressor is made of a piston and a tank. The piston moves rapidly inside the cylinder and exerts pressure on the cylinder. This means that the piston can’t move any faster than the air pressure outside the cylinder. The piston is designed to operate in the same way for each stage. This is a great choice for home shops and one-man automotive shops, as it allows you to control the pressure without sacrificing the pump’s life.
Single-stage air compressors are often cheaper than two-stage versions, but they are not the best choice for every application. If you are only using your air compressor occasionally, you’ll find a one-stage model to be much more reliable than a two-stage model. The main difference between the two types of compressors is in the amount of air that each stage compresses. A two-stage air compressor will have more air storage capacity, but it will still produce more pressure.
Rotary vane compressors
Rotary vane compressors use a centrifugal pump to compress air. The rotor is set eccentrically in the housing, which almost touches the vane. As the rotor turns, the air that enters the pump is trapped between the vanes. This compressed air undergoes compression as the rotor rotates. Vanes are small pieces of carbon fiber or graphite composite. Vanes may be made of different materials depending on the application.
While rotary vane pumps are not commonly used to produce compressed air, they are widely used in automotive and hydraulic applications. Chances are, you have used a rotary vane pump at some point in your life. These pumps are also common in the vacuum and compressed air industries. As a result, many people don’t realize that they’re still around. They feature slots that allow the vanes to slide in and out of the rotor.
A rotary vane compressor has a drum and rotor inside. The rotor is eccentrically positioned and has slots and grooves on its surface. Its inlet and outlet ports are situated off-center, allowing the vanes to be pushed out by centrifugal force. Because the rotor rotates so quickly, air is trapped between the vanes. This air then becomes pressurized by the rotating rotor.
Rotating vane compressors can be easily serviced and repaired. A simple replacement of carbon vanes requires just 15 minutes and common tools. The carbon vanes typically last nine to eighteen months, depending on system operating pressure. Before purchasing a rotary vane compressor, make sure to check whether it has been properly performance-tested and has a warranty. Generally, warranties cover the rotor/stator chambers but do not cover the vanes or air filters. You should also check if the unit is covered by a lightning or water damage warranty.
Rotary vane compressors are an integral part of manufacturing industries. Many pharmaceutical manufacturing facilities depend on rotary vane compressors to control their equipment. Other industries that use rotary vane compressors include the plastics, woodworking, natural gas, and medical & dental fields. Their benefits are numerous and far outweigh any disadvantages of rotary screw compressors. For example, a rotary vane compressor can double the life of a conventional compressor.
Rotary vane compressors with low-noise models
If you are looking for a rotary vane air compressor, you have come to the right place. CZPT’s LV Series rotary vane compressors offer low-noise models, compact size, and robust integration. In addition to their low-noise features, they feature large filter systems to deliver high-quality compressed air. The LV Series models also feature CZPT’s reputation for reliability and quality.
This type of compressor uses centrifugal force to operate and is limited in its top and minimum operating speeds. They are only a third as powerful as screw compressors, and their top speed limits are much lower. Furthermore, the vanes wear out easily at high speeds because there is not enough centrifugal force to seal them against the cylinder’s edges. Even at half their full capacity, they consume as much as 80% of their total energy rating.
Because piston compressors produce a lot of noise, factory owners and shop owners have begun to install noise-dampening cabinets and other solutions. But, rotary vane compressors produce far less noise than a traditional vacuum, and the maintenance costs are also low. Rotary vane compressors are also extremely helpful in several industries. They are used in the automotive and auto finishing industries, as well as in dairy industries and milking machines.
If you have a deep pond, a rotary vane air compressor kit can pump up to 20 feet of water. This is more than enough airflow for two to five diffusers. A 1/4 HP rotary vane kit pumps around 4.2 CFM. It also helps to increase circulation and oxygen levels in the pond. Finally, a 1/4 HP kit offers the necessary power to clean up the bottom of a pond.
The rotary vane and rotary screw are the most popular air compressors today. While they are similar in many ways, they are more versatile and durable than their counterparts. They use fewer angular contact ball bearings and require less frequent maintenance than piston air compressors. Compared to piston air compressors, rotary vane and rotary screw compressors are quieter and are less expensive.
Rotary vane compressors with two pistons
The rotary vane and rotary screw compressors are similar in application, but both have different advantages and disadvantages. This article will compare the benefits of each and highlight the differences between them. While both are commonly used in industrial applications, rotary vane compressors are preferred by many industries. These compressors also have a wide range of uses, ranging from automotive air tool operation to milking machines. These compressors also have the advantage of being quieter than piston-powered ones.
The current common rail position may not be suitable for pressure swirl injectors, but new positions have been tested and show improvements in specific energy values. Moreover, the current position is not required for external oil pumps. However, mass induction and expulsion have to be performed with utmost care. This article focuses on the design and efficiency of rotary vane compressors. You can find more information about this new design in the references mentioned below.
The advantages of this type of compressor are its low cost, compact size, and easy maintenance. Hence, they are preferred in low capacity applications. Moreover, they feature integrated vanes. The rotating vanes close the air gap and compress air towards the outlet. Compared to piston-powered compressors, these units are cheaper and more reliable. Therefore, you should choose one with the lowest price tag. You can also opt for rotary vane compressors that are oil-free.
Sliding vane compressors are another popular variant. They have a single cylinder connected to the compressor and are capable of operating at low speeds. This design also reduces the amount of friction and maintains volumetric efficiency. However, the sliding vane compressors suffer from high frictional losses. If you are looking for a more efficient rotary compressor, this is the best option. While sliding vane compressors have been in the spotlight for over a century, they are still quite young.
These compressors are easy to install and maintain. They are also quieter than piston compressors. They are also cheaper than piston-driven compressors. The energy efficiency and low price make them the perfect choice for any commercial or industrial application. If you’re looking for a small, compact compressor, the rotary vane has been proven to be the best choice for your needs. You should know that it has a long service life.


editor by czh 2022-12-14